TOP RUSSIA NEW TECHNOLOGY

Emerging and disruptive technologies (EDTs) are often perceived as carrying the potential to revolutionize governmental structures, economies, militaries, and entire societies. Russian leadership shares that belief. The Kremlin perceives the ability to innovate as a capability of a great power, helping to achieve the goals in strategic competition. Russia recognizes that EDTs will be fundamental to the country’s overall military deterrence and defense posture and will also allow the regime to increase control over Russian society. Therefore, Russia joining the technological race seems less of a choice and more of an existential necessity for both external and internal reasons.

Trends in the Technological Race

Although a new era of “great power competition” has invited comparisons with the Cold War, today’s strategic competition between the United States, Russia, and China—with multiple simultaneous competitions under different or overlapping sets of rules—is more complex and unpredictable than the previous U.S.-Soviet rivalry. Long-term economic interdependencies coexist with core strategic disagreements, while ideological and institutional contests focus on the making and interpretation of rules and norms. Consequently, the ways and means of engaging in strategic competitions vary from pursuing security and prosperity through cooperative and institutional terms strictly in the economic arena, to sharp political-military competition for power and status. The race for technological superiority is a central pillar of this competition, one that could potentially produce a game-changing, war-winning advantage.

According to the North Atlantic Treaty Organization’s (NATO) 2020 assessment, eight technologies will become major disruptors by 2040: data, artificial intelligence (AI), autonomy, space capabilities, hypersonic weapons, quantum, biotechnology and human enhancement, and novel material and manufacturing (NMM). These will play a crucial role in future warfighting and in building forces that can decisively operate across multiple domains. Cutting-edge technologies increase the efficacy of existing weapons systems and add new ones—such as cyber—which can amplify a country’s military power and thus geopolitical power. EDTs will affect the very foundations of deterrence strategy and strategic stability that shape political and military relationships between Washington, Moscow, and Beijing.

The current technological race is characterized by seven trends that will define global economic transition, military transformation, and crisis escalation. First, exponential increases in the power of computer processors will add more computing power over the next decade than in all of human history combined. This has implications for the military as increasingly sophisticated algorithms (machine learning) will exploit the growing availability of digital content (big data) in a much faster manner and potentially further reduce the role of humans.

Second, software will steadily reshape the technological race. The modern combat soldier is embedded in a web of software that provides intelligence, communications, logistics, and weapons guidance. Intelligence agencies do large-scale data mining with software to uncover and track potential threats. In particular, this happens due to ongoing developments in the field of deep neural networks.

A neural network is essentially a computer program with hundreds of millions of virtual components connected by virtual wires. These virtual wires have different connection strengths. Neural networks can help measure next-generation AI and machine learning algorithms’ reliability, which can be applied in command and control systems, precision fire, and decision support systems. Moreover, neural networks enhance detection capabilities, such as the autonomous underwater vehicles that are equipped with synthetic aperture sonars used for mine detection.

Third, the proliferation of portable electronic devices alters the battlefield. They are the fundamental components of numerous systems such as radar, communications, electronic intercept equipment, and weapon guidance seekers. They are used in front-end receivers and transmitters as preprocessors, as well as in signal processing and automatic target recognition systems. The most important advances in electronic devices include monolithic microwave integrated circuits, superconductive electronics, vacuum microdevices, computer memories, application-specific integrated circuits, analog-to-digital converters, and digital signal processing microcomputer chips.

Finally, additional trends that will shape strategic competition between great powers include: the proliferation of precision-strike capabilities, the intensification of the battle network competitions, the expansion of military activities in frontier domains (including space and cyberspace), and the supplanting of human forces by highly autonomous machines.

ome important progress in swarming technology.

Enjoyed this article? Stay informed by joining our newsletter!

Comments

You must be logged in to post a comment.

About Author

i am a student

Recent Articles